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Abstract

This paper presents a comparative study of near infra-red optical tomography with the radiative transfer
equation. The forward model is based on the least square finite element method associated to the discrete ordi-
nates method. Comparative tests of reconstruction on noise free data of optical properties are carried out. The
results show as expected that increasing the number of degrees of freedom of the coefficients improves the quality
of the reconstruction. It is also seen that using discontinuous elements for the coefficients, gives better results
than continuous one as they are well suited for handling the discontinuities in the coefficients field which is usually
encountered in real applications.

1. Introduction

In the last decade, increasing developments have been achieved in non-invasive clinical controls and
medical diagnostics techniques such as magnetic resonance imaging and positron emission tomography, to name
a few. Among these methods, near infrared optical tomography has been emerging as a promising diagnostic tool
as this method requires a relatively low-cost system development with a reasonable accuracy compared to other
methods. In addition, the method does not make any damage to biological tissues as the wavelength of the light
source used for probing is a near infrared radiation in the range between 600 and 900 nm. These developments
were made possible thanks to advances in the theoretical understanding of the interaction between light and
optical properties of semi-transparent media such as human tissues. On the other hand, the improvement of light
detection systems as well as light sources that irradiate the tissues, was necessary in order to put these techniques
into practice. For this purpose, major studies were carried out using the full radiative transfer equation [1, 2, 3, 4]
as this equation properly describes light transport in biological tissues.

However, the radiative transfer equation is difficult to solve and analytical solutions are available only
for simple cases. Different approximations are used, among which the diffusion approximation is well suited for
biological tissues due to their high scattering [5]. While this approximation leads to an equation that is easy to solve,
it fails to describe light transport near boundaries, sources, and in void-like regions where the mean free path is very
large. We have developed so far a number of reconstruction algorithms for optical tomography applications with
numerical models based on the radiative transfer equations in steady, frequency and time domains [1, 3, 6, 7, 8].
As for optimization, robust algorithms of gradient type have been developed and coupled with the adjoint method
for the computation of the objective function gradient, among which we can name the conjugate gradient without
line search, the sensitive function conjugate gradient [9].

Lately, we have made some developments in frequency domain optical tomography with a finite element
based model of the collimated irradiation where both, the forward and the adjoint models take into account the
collimated direction and where the computation of the objective function gradient with an adjoint method is intro-
duced in a Langragian formalism that ease the understanding of the method in optical tomography applications
[10, 11, 12]. This study presents a comparative study to gauge the image accuracy according to the finite element
space chosen for the optical properties. We first describe the reconstruction procedure in optical tomography and
then use numerical test on noise free data to compare the accuracy in the reconstruction of optical properties of a
scattering and absorbing medium where different finite element spaces are used to model the optical properties.
The development is done in the frequency domain.
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2. Optical tomography

Optical tomography is an inverse method which aims at identifying the optical properties (scattering and
absorption coefficients) of a numerical model based on light transport within tissues from boundary measurements
[13]. This is done by minimizing the mean square discrepancy between the measurements and the predictions of
the numerical model (forward model) at detectors locations.

2.1. Forward model equations

In the frequency domain, the prediction of the forward model is the emerging light intensity from the
medium. This prediction is given by

P (r) =

∫
~Ω · ~n>0

Is(r, ~Ω, ω)~Ω ·~ndΩ ∀r ∈ ∂D (1)

where the boundaries are considered as transparent and non-reflecting, ∂D is the boundary of the medium D,
Is(r, ~Ω, ω) is the complex scattered component of the intensity at the spatial position r, ~Ω is the light propagation
direction, ω is the modulation frequency and ~n is the outward unit vector at the boundary surface. The scattered
intensity Is(r, ~Ω, ω) is solution of(

~Ω · ∇+
iω

c
+ κ+ σ

)
Is(r, ~Ω, ω) =

σ

4π

∫
4π

Is(r, ~Ω
′
, ω)Φ

(
~Ω
′
, ~Ω
)
dΩ
′
+ Sc(r, ~Ω, ω) (2)

where κ = κ(r) and σ = σ(r) are respectively the absorption and the scattering coefficients, Φ(~Ω
′
, ~Ω) is the

scattering phase function, Sc(r, ~Ω, ω) is the collimated source term induced by the scattering of the collimated part
of the intensity within the medium . The boundary condition of Eq. (2) is

Is(r, ~Ω, ω) = 0, ~Ω ·~n < 0, ∀r ∈ ∂D. (3)

The collimated source term is given by [5]

Sc(r, ~Ω, ω) =
σ

4π
Ic(r, ω)Φ(~Ωc, ~Ω) (4)

where ~Ωc is the collimated source direction, and Ic(r, ω) is the collimated intensity solution of the extinction law [5]
such that(

iω

c
+ ~Ω · ∇+ κ+ σ

)
Ic (r, ω) = 0 (5)

where the boundary condition is a collimated external radiation that penetrates into the medium with direction ~Ωc
at spatial position r0 :

Ic (r, ω) = q0(r, ω)δ(r − r0), ~Ωc ·~n < 0 ∀r ∈ ∂D. (6)

In order to compute the boundary measurement by Eq. (1), one has to solve numerically the forward
model equations (Eq. (5) and Eq. (2)). This is done with the least square finite element formulation associated to
the discrete ordinates method whose accuracy has been shown in [10].

2.2. Forward model solution procedure

The method used to solve the forward model equations (Eqs. (5) and (2)) is based on the discrete ordinates
method associated to the least square finite element [14, 15, 16]. In this procedure, the discrete ordinates method
is used to handle angular dependency whereas the finite element is used to solve the resulting spatial equations.
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2.2.1. Discrete ordinates method

In the Discrete Ordinates Method, integrals over solid angles are replaced by a numerical quadrature [17].
Thus, Eq. (2) is rewritten as a spatial differential equation for each discrete direction ~Ωm :(

~Ωm · ∇+
iω

c
+ κ+ σs

)
Ims (r, ω) = Smc (r, ω) +

σs
4π

M∑
m′=1

Im
′

s (r, ω)Φ
(
~Ωm′ ,

~Ωm

)
wm′ (7)

where M is the number of directions of the quadrature, wm and Ims are respectively the quadrature weight and the
radiative intensity in direction ~Ωm. The corresponding boundary condition writes

Ims (r, ω) = 0 ~Ωm ·~n < 0, ∀r ∈ ∂D. (8)

Equation (7) associated to its boundary condition (Eq. (8) is an advection type equation that is to be solved
for the M directions of the quadrature.

2.2.2. Least square finite element formulation

The equations of the collimated intensity (Eq. (5)) and the scattered intensity for each direction of the
quadrature (Eq. (7)) are advection type equations that can be solved by numerical methods such as the finite
volume, finite difference or finite element method, among others. In the following, the least square finite element
formulation is used.

Let us rewrite the equations of the collimated intensity and the scattered intensity for each direction of the
quadrature as

β.∇u+ bu = f ∀x ∈ D

u = h ∀x ∈ ∂D−
(9)

where β is the advection direction (β = ~Ωc or β = ~Ωm), u = u(x) is the complex value field, b is the complex
extinction coefficient, f the complex source term, ∂D− = {x ∈ ∂D, β ·~n < 0} is the inflow boundary according to
the advection direction β and h is the inflow boundary complex function that is applied to the system. Equation (9)
is rewritten as :

L (u) = f ∀x ∈ D

G (u) = h ∀x ∈ ∂D−
(10)

where operators L(u) and G(u) are L (u) = β.∇u+ bu and G (u) = u. The least square finite element formulation
of Eq. (10) writes:

Find u ∈ X such that

B (u, v) = F (v) ∀v ∈ X
(11)

where X is the finite element space where the solution u is searched, B (u, v) and F (v) are respectively the
bilinear and linear forms given by

B (u, v) = (L (u) , L (v))D + ε (G (u) , G (v))∂D−

F (v) = (f, L (v))D + ε (h,G (v))∂D−
(12)

where ε is the penalization term chosen numerically such that ε + 1 ≈ ε. Details on the accuracy of the solution
procedure are given in [10].
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2.3. Forward model algorithm

In the algorithm of the forward model, Eq. (5) is solved first for the collimated component solution and
then the resulting source term (Eq. (4)) is used for the solution of the scattered part (Eq. (7)) through an iterative
procedure where the initial scattered field is null. The algorithm is stopped when the maximum absolute relative
error between the current and the previous iterations of the scattered intensity solution field is low, such that

max
i,m

∣∣∣∣∣I
m,k−1
s,i − Im,k

s,i

Im,k
s,i

∣∣∣∣∣ ≤ 10−6, ∀i, ∀m (13)

where Im,k
s,i is the discretized scattered component solution in direction m at iteration k and i is a degree of freedom

of the finite element solution.

3. Identification of the optical properties

The optical properties are recovered through an iterative scheme which consist in minimizing an objective
function. Here, a gradient type optimization is used where the objective function gradient is deduced through an
adjoint formulation.

3.1. Objective function and its gradient

The objective function to be minimized writes

J (θ) =
1

2

Ns∑
s=1

Nd∑
d=1

‖Ps(rd)−Ms,d‖2 (14)

where θ is the vector of parameters (θ = (κ, σ) i.e the absorption and scattering coefficients), Ps(r) and Ms,d

are the d-th detector prediction and measurement obtained with the s-th collimated source respectively, Ns is the
number of collimated sources, Nd is the number of detectors, ‖.‖2 is a l2 norm.

We suppose that κ and σ belong to the same finite element space θ = (κ, σ) ∈ R2Nc where Nc is
the number of degrees of freedom of the chosen finite element space. In the following, the space of piecewise
polynomial functions of degree 1 is also chosen for κ and σ fields. The gradient of the objective function is computed
with the adjoint method with the following expressions [11] :

∇J (θ) δκ = (λs|Isδκ)s + (λc|Icδκ)c

∇J (θ) δσ = (λs|Isδσ)s + (λc|Icδσ)c −
(
λs|
(

1

4π

∫
4π

I(r, ~Ω
′
, ω)Φ

(
~Ω
′
, ~Ω
)
dΩ
′
)
δσ

)
s

(15)

where (.|.)s and (.|.)c are inner products associated to the solution space respectively of Is and Ic and λs =

λs(r, ~Ω, ω), λc = λc (r, ω) are the corresponding complex vectors which represent the solution of the following
adjoint equation system:(

−~Ω · ∇ − iω

c
+ κa + σ

)
λs −

σ

4π

∫
4π

λsΦ
(
~Ω
′
, ~Ω
)
dΩ
′
+
∂J (θ)

∂Is
= 0

(
−~Ω · ∇ − iω

c
+ κa + σ

)
λc −

σ

4π

∫
4π

λsΦ
(
~Ω
′
, ~Ωc

)
dΩ
′

= 0

(16)

with null boundary conditions for both λs and λc as the boundary condition of the forward model does not depend
on any optical parameter. We refer to references [18, 11, 19] for more details on how to deduce the gradient of the
objective function trough a lagrangian formulation.
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(a) (b)

Fig. 1. Test description. (a) Two inclusions with collimated sources positions, (b) mesh of the domain.

3.2. Inversion algorithm

As the optical properties are generally space dependent, one may end up with a large scale minimization
problem where gradient-based algorithms have shown to be efficient [9]. Here, our reconstruction scheme is based
on the well known BFGS method [20, 21, 22] where a scaling of both the objective function and its gradient are
used to handle round off erros and the low level of the boundary measurement due to the high extinction in the
medium [4, 12].

4. Numerical test

4.1. Test description

The test medium is a circular domain of diameter of 2 cm which contains two inclusions (see Fig. 1(a)).
Optical properties are plotted on Fig. 2 and their corresponding values are given in Table 1. The medium is
assumed to be forward-scattering with a Henyey-Greenstein anisotropic factor g= 0.9 , and four zero-phased illu-
mination sources with a frequency of 600 Hz are regularly placed at the bottom, the right, the top and left of the
medium boundary (see Fig. 1(a)). Fifty-six (56) detectors are used around the medium.

The synthetic data are generated on a regular triangular mesh of 757 elements (see Fig.1(b)), with 2× 446
spatial degrees of freedom (P1 elements) and 48 discrete ordinates (S6 quadrature) by using the above forward
model. The generated complex-valued intensities are used as the input data for the inversion without noise for a
comparative test where the coefficients κ and σs are approximated with different finite element spaces. In order to
measure the quality of the reconstruction, we introduce an error ε defined by:

ε =
1

Nc

Nc∑
i=1

(θri − θoi )
θoi

(17)

where superscripts r and o refer to the reconstructed and original images, respectively. The error ε represents the
mean quadratic error per degree of freedom.

4.2. Results

A comparative test is carried out with different finite element spaces for the optical properties where the
intensity fields are supposed to be in the space of linear continuous elements (P1 elements). Fig. 3 shows the
results where the reduced scattering coefficient σ

′

s = (1 − g)σs is used. First, it is seen that the reconstruction is
accurate for each case as the errors are very low (see Table 2). The errors also show that increasing the number
of degrees of freedom of the coefficient improves as expected the accuracy of the image quality. A comparison of
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Table 1. Properties of the test medium

Background Bottom inclusion Top inclusion

κ 0.5 cm−1 0.4 cm−1 0.6 cm−1

σs 50 cm−1 40 cm−1 60 cm−1

(a) (b)

Fig. 2. Original distribution of optical properties. (a) and (b) the original distribution of the absorption and the reduced
scattering coefficients respectively.

(a) (b) (c)

(d) (e) (f)

Fig. 3. Comparison of the reconstruction with linear continuous elements for the intensity fields. (a) and (d) the reconstructed
image with P0 elements of the absorption and the reduced scattering coefficients respectively. (b) and (e) the reconstructed
image with P1 elements of the absorption and the reduced scattering coefficients respectively. (c) and (f), the reconstructed
image with P1dc elements of the absorption and the reduced scattering coefficients respectively
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Table 2. Reconstruction errors where both, κ and σ belong respectively to P0 (space of piecewise constante discontinuous
finite elements) and P1 (space of piecewise linear continuous finite elements). The initial objective function value is scaled with
the measurement, the final value is normalized with the initial scaled objective function value. εκ and εσ are the corresponding
errors for κ and σ coefficients respectively.

Finite element space P0 P1 P1dc

Nc 757 411 2271

Initial J (θ) 1.21 10−1 2.15 10−1 2.21 10−1

Normalized final J (θ) 7.05 10−4 1.52 10−4 8.68 10−4

εκ 2.88 10−5 6.77 10−5 1.01 10−5

εσs 2.54 10−5 5.18 10−5 9.08 10−6

the image quality (Fig. 3) shows that the values of the inclusions are overestimated when the optical coefficients
are assumed continuous. Therefore, discontinuous elements are better suited than continuous elements as they
allow one to take into account the discontinuities of the optical properties which may arise in real application cases.
Finally, we observe that the scattering coefficient is better estimated than the absorption coefficient. This is due
to round off errors that affect the recovering of the absorption coefficient as its order of magnitude is very low
compared to that of the scattering coefficient.

5. Conclusion

In this study, a comparative test of reconstruction of optical properties of scattering and absorbing medium
is done. The forward model is a finite element model based on the discrete ordinates method and the least
square finite method. The comparison shows as expected that increasing the number of degrees of freedom of
the coefficients improve the quality of the reconstruction. It is seen that discontinuous elements give better results
than continuous ones as they are well suited for discontinuous fields which is the case in real applications. Also,
the low error values of the reconstruction show that the proposed method is efficient.

In a future step, we hope to speed up the forward and adjoint model by using multiprocessing solvers.
A comparison will be done in order to show the influence of taking into account the collimated direction on the
accuracy of the reconstruction. Also, new optimization schemes will be worked out such as the sequential quadratic
programming method.

.
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